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This paper examines strong Cesaro summability and strong Cesaro sectional
boundedness of order 1 <r < oo in Banach and Fréchet spaces E. The major result
shows these topological properties of E to be equivalent to multiplier properties of
the form E=(dv,ncy)-E and E=dp, - E, where dv, is the space of sequences of
dyadic variation of order r defined in this paper. These multiplier results show that
several classical spaces of Fourier series have these properties. This introduces a
new form of convergence in norm for Fourier series. The space L}, for example,
has strong Cesaro summability of all orders 1 <r < 0. Fejér’s Theorem states that
for all feLl , (1/n+1)IXi_o 5 —fllui=0(1), (n— ), where s*f is the kth
partial sum of the Fourier series of f; since the dual of L}_is LY, this is equivalent
10 SUPy .y (W(m+ INEE 0 [57 2 (8 — ) =0(1), (n—> ). As a consequence
of strong Cesaro summability, the absolute value can be taken inside the
summation and raised to any power | <r< c0. Namely, for all fe L},

n

sup P Y

gz <1 k=0

r=o(1) (n— o).

[ ewr-n

The supremum, however, cannot be taken inside the summation.  © 1992 Academic
Press, Inc.

1. INTRODUCTION

A Frechet space is a complete metrizable locally convex space; for
example, every Banach space is a Fréchet space. Consider a Fréchet space
E with a total biorthogonal sequence {e*, f;} [1]. That is,

e*e E  forall k; (1.A)

JieE’ (the space of continuous linear functionals) for all j; (1.B)
fj(e")=5jk (Kronecker 8) for all k£ and j; (1.C)

fi(x)=0 for all j implies x = 0. (1.D)
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Generally we assume that the indices k and j range over the nonnegative
integers but when discussing Fourier series of 2n-periodic functions the
indices will range over all integers. Each x in E can be identified with the
sequence % = (xo, Xy, X,, ..) Where x;=f;(x). Let E={%|xeE}. E and E
are isometric and isomorphic if, for each defining seminorm p. on E, we
define pz(®)= pe(x). If E is a Banach space we define |X] s= ||x] z. By
conditions (1.B) and (1.C), £ has continuous coordinate functionals. Such
a Fréchet (respectively Banach) sequence space is called an FK-space
(respectively, BK-space). By condition (1.A), E contains the space of finite
sequences

¢ = {x=(x;)| x, =0 except for finitely many k}.

For simplicity, most theorems in this paper will be stated for FK-spaces
(that is, E=E where, for each k, ¢* is the sequence with 1 in the kth
position and O elsewhere); however, when considering function spaces
it will often be more convenient to work directly on E instead of the
corresponding FK-space E.

An element x in F has the property of sectional convergence (denoted
AK) in E if the sections s"x :=x,e°+ x,e' + --- + x,e" converge to x (as
n— o0) with respect to the topology of E. In case the biorthogonal
sequence ranges over all integers, we define s"x :=Z|k,<"xke" for
n=0, 1,2, ... More generally, an element x, not necessarily in E, has the
property of sectional boundedness (denoted AB) in E if the sections s"x are
bounded in E. Similarly an element x in E has the property of Cesaro
sectional convergence (denoted ¢K) in E if the Cesaro sections
o"x ;= (s°%+ .- +5"x)/(n+ 1) converge to x (as n— o0), with respect to
the topology of E. This is equivalent to

n
Z skx —x)

lim
now i+ 1

An element x, not necessarily in E, has the property of Cesaro sectional
boundedness (denoted ¢B) in E if sup, p(6"x)< oo for all continuous
seminorms p on E.

Let 1<r< . Section 2 contains basic definitions and introduces the
properties of strong Cesaro summability of order r (denoted [¢K],) and
strong Cesaro boundedness of order r (denoted [¢B],) in Fréchet spaces.
These properties are stronger than oK and o B, respectively, but are weaker
than AK and AB, respectively. Section 3 contains general results on strong
Cesaro summability and strong Cesaro boundedness in Fréchet spaces. In
Section 4 specific spaces are considered; namely the convergence fields H,
and boundedness domains B, of the strong Cesaro summability methods,
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and their spaces of convergence factors dv, and dv, N cy. In Section 5 we
show the equivalence of the properties [6B], and [¢K], to multiplier
properties with respect to the spaces dv, and dv,nc,. In particular, a
Fréchet space E containing ¢ has the property [oB], if and only if
E=dv, -E, and it has the property [¢K], if and only if E=(dv,n¢y)-E.
In Section 6 we consider function spaces and show how these multiplier
results can be used to obtain a new form of convergence for Fourier
series. For example, we show that the spaces L; (1< p<o) and C,,
(27-periodic continuous functions) have the property [¢K], for all r and
the spaces L3, and M,, (2n-periodic Radon measures) have the property
[oB], for all r. Fejér's theorem for L}_is equivalent to the property oK
but, for all », the property [¢K], is stronger.

I thank M. Ash, G. Goes, and N. Tanovi¢c-Miller for helpful suggestions.
In particular, the example in (6.3) is due to N. Tanovi¢-Miller.

2. DEFINITIONS

Let E be an FK-space containing ¢. By the Hahn-Banach theorem each
continuous seminorm p can be expressed in the form

p(x)=sup | f(x)] (2.A)

feAp

for some subset 4, of E'. Thus an element x of E has the property oK if

R

n+1,

lim sup
n—d fe Ap

for every continuous seminorm p. Let 1 <r < oo. We define the property of
strong Cesaro summability of order r (denoted [¢K],) for xe E by

lim sup—l‘—i | f(s*x —x)]"=0 (2.B)

n— oo fEApn+1k=0

for every continuous seminorm p. Similarly a formal expansion
x=Y_ o xe* with £=(x,, x,, ...), but £ not necessarily in E, has strong
Cesaro boundedness of order r (denoted [6B],) in E if

- _1_ ‘ k r v
p=swp swp {2 § 1| < 20

for each continuous seminorm p. If £ is a Banach space, we write | x|,
instead of p,(x).
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A continuous seminorm p on E does not uniquely determine the set 4,.
For now, we will assume that

A,={feE'l|fI<p} (2D)

however, a proper subset of (2.D) is often more natural. For example, if
E=C,, with norm || g||* =sup, |g(y)l, it is natural to choose 4 to be
the set of f, defined by f,(g) = g(y), 0< y <2n. Theorems (3.1) and (3.3)
(or more explicitly, (5.1)) show that the choice of 4, does not affect the
definitions of [oK], and [¢B],. We write

E(,xy, := {x€ E| x has the property [¢K], in E},

Q0
N k
Er,p), = {x-— Y xie

k=0

x has the property [oB], in E},
E,p:={xeE|x is in the closure of ¢ in E},

and similarly for E x, E, 5, E,x, and E,,. Note that the spaces Ey,p,,
E, g, and E 5z need not be subsets of E.

We say that E has the property [6K], if E= E[,x,; E has the property
[0B], if Ec E[,,; E has the property AD if E=E ,,; etc.

Hoélder’s inequality applied to (2.C) shows that p,(x)<p,(x) for
1<r<s<oo. Similarly it can be shown that [¢X], implies [¢6K], and
[oB], implies [6B],, if | <r<s<oo. It is clear from the definitions that
[6K], implies both 6K and [¢B],. By an argument similar to that showing
that ordinary summability implies Cesaro summability, it can be shown
that, for all », the property AK in E implies

Zn: pls“x—x)" =0

k=0

lim
nﬂoon+1

for all continuous seminorms p. (2.E)

This in turn implies [¢K7],. Similarly the property 4B implies
1 = yr
Sl.’:p {1_1—4-_1 kgo p(s"x)’} <0
for all continuous seminorms p (2.F)
which implies [6B],. The converse implications are not true as shown by
examples in (4.4) and (6.3).

It will be shown in Theorem 3.1 that an FK-space E has the property
[oK1], if and only if it has the properties AD and [¢B],.
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The convergence field for strong Cesaro summability of order r is
denoted by

1 n
= = i —_— — r:O ,
H, {x (x¢)] 3seCahnmn+1 E | Xy — s| }

k=0
where X, =xo+ --- +x; (or X, =3, <, x; if the index k ranges over all

integers) and the boundedness domain for strong Cesaro summability of
order r is

1 n 1/r
B, :={x=(xk)|”x”8,:=5up {m Y |Xk|'} <00}-
n k=0

Below we list some useful BK-spaces and their norms. We use the
notation Ayy=yi— Vi1, AVi=Ayi—A4yii1, MaXy=MaAXgn_ s ns1
and ¥,,=Y2""~! If the index k ranges over the integers we assume that
Yie=y_, for the spaces bv, dv,, and ¢ listed below. The space of bounded
sequences 18

1°={x=(x ) x|l := SUP|xk| <o}

and the space of null sequences

co={x=(x;,)|lim x, =0}
is a closed subspace of /™. The space of sequences of bounded variation is

bv={y=(yk)| 1yl =3 |4yil +suply,l < 00}-

k=0

The spaces of sequences of dyadic variation are defined as
do=do, ={y= () 131

27 maxy 4y, _ 1| +suply| < OO}’

dv, = {y= AL

= 27 (S 1Aye )Y + suplyel < oo}
n=0



STRONG SUMMABILITY IN FRECHET SPACES 61

for 1 <r< oo and 1/r+ 1/s= 1. It is natural to define dv_, = bv. The space
of bounded quasiconvex sequences is

q= {y= lllyl, =3 (k+1) (4%, +suply < 00}.

k=0

We have gcdvcdv,cdv,cbv for 1<r<s< o [6,9].

3. GENERAL RESULTS

Zeller has shown that an FK-space E containing ¢ has the property 4K
if and only if it has the properties 4B and AD. A corresponding theorem
for 6K was proved in [3]. Using a similar ¢/3 argument we obtain it for
the property [oK],:

(3.1) THEOREM. Let 1<r< . An FK-space E containing ¢ has the
property [oK], if and only if it has the properties [6B], and AD.

Proof. Let xeE have the property [¢K], and let p be a con-
tinuous seminorm on E. The property [oB], follows immediately. For
each n, o"xe¢ and p(c"x— x)—supf“ /(1 (n+ 1) 27 _o (s x—x))| <
SUPye 4, (1/(n+1)) 2% _ ol f(s¥x —x)| -0 as n—oo. Thus x has the
property AD. Conversely, suppose E has the properties AD and [¢B],.
Since for all xeE we have p,(x)=sup,sup,., {(1/(n+1))3;_,
| f(s*x)|"} " < o0, the seminorm p, is lower semicontinuous and hence
continuous on E (Theorem 7.1.1 of [7]). Let xe F and &>0. Since
E has the property 4D we can find ye¢ such that p(x— y)<e¢/3 and
pA{x—y)<e3. We can choose n sufficiently large so that
{(/(n+ 1)) X7 o p(s*y— y)} " <e/3. Let |f]| < p. Then by Minkowski’s
inequality

1/r
gy

—A—
3
I
9
<
=~
——
¥
+
—A—
+ —
"[\’J=
=
“
"<
‘ﬁ
:
\—v—/
3

640/68/1-5
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Taking the supremum over all |f] < p, we see that x has the property

[O.K]r' I

(3.2) CorROLLARY. Let 1 <r<oo. If an FK-space containing ¢ has the
property [aB],, then Ej,xq =E 4p.

Proof. E,p, being a closed subspace of E, is an FK-space with the
properties AD and [¢B],. By (3.1) we have E,,c E[,«q,. The inclusion
E,x3,< E 4p 1s shown in the proof of (3.1). 1|

For FK-spaces E and F, define

E?={y=(y:)for some fe E', y, = f(e")}

and

Fely=)lx-y=(xy,)e FVxeE}.

If E is a BK-space, then E® can be identified with the dual space of E ,,
[5] and is thus a BK-space under the dual norm of E,,,. However, for an
FK-space E, the space E* need not be an FK-space (the space E= o of all
complex valued sequences is such an example). The proof of the following
theorem is consequently more difficult than in the BK-space case.

(3.3) THEOREM. Let 1 <r< oo and let E be an FK-space containing ¢.
A sequence x has the property [aB], with respect to E if and only if

1 . k r
i L <o

s/(x) :=sup

for every fe E".

Proof. The proof of (=) is obvious. For the converse, we use a
uniform boundedness argument. Suppose 5,(x) < oo for all fe E'. Let p be
a continuous seminorm on E and let E, be the space E under the locally
convex topology defined by the single seminorm p. Then E} is a Banach
space with unit ball U= {fe E,||f]| < p}. (Actually E? is a BK-space with
E? < E®). Let B={feE,|s/(x)<1}. B is clearly absolutely convex and
closed. B is radial (absorbing) since s (x) < oo for all fe E,. Thus B is a
barrel in E,. Since E), is barreled, B is a neighborhood of 0. Thus there
exists an N> 0 such that (1/N) Uc B. Then sup <, s(x)<N. |

(3.4) COROLLARY. Let 1 <r< oo and let E be an FK-space containing ¢.
Then

Eiop,= (E?)*.
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(3.5) CoroLLARY. Let 1 <r< oo and let E be an FK-space containing ¢.
Then

(@) E has the property [oB], if and only if E?=E*;
(b) E has the property [aB], if and only if E,5, =(E®)?;
(¢) if E has the property [6K],, then E¥ = E™"",

Proof. Let (X-Y),=x¢yo+ --- +x, y; and define

n

Y (XY

k=0

1
sup —

ab . _ ) —
B = {3 =) [sup—

< oo for all er}.

It was shown in [4, Theorem 3] that for any FK-space E containing ¢ we
have E°® c E*. Clearly E® c E°® = E*. Thus (a) follows immediately from
(3.3). Statement (b) follows from (a), (3.4), and E = (E®)%. Statement (c)
is a consequence of E* = E® < E¥ and the definition of [¢K],. |

(3.6) THEOREM. Let 1<r<oo. If E is an FK-space containing ¢
generated by a set of seminorms P, then E(, g, is an FK-space under the
topology generated by the set of seminorms {p,|pe P}.

Proof. It is shown in [3] that £, is an FK-space under the seminorms
g,(x) :==sup, p((1/(n+1)) X% _, s*x). We have g, < p, by the definition of
p1; also p; < p, by Hoélder’s inequality. Since E|,z;, = {x€ E, 3| p,(x) <0
Vpe P} it follows from Garling’s Theorem [10, p. 998] that E,p; is an
FK-space. |

(3.7) Remark. We will show in (5.3) that for every FK-space E
containing ¢, the space E|,5,, always has the property [¢B],. However, an
FK-space E (containing ¢) with the property [¢B], need not be a closed
subspace of E|,z;,. Thus if the topology of E is generated by a set of semi-
norms P, the topology generated by the set of seminorms {p,|pe P} need
not make E an FK-space.

(3.8) Remark. If E is an FK-space containing ¢, it can be shown that
the set of all sequences x (not restricted to those belonging to E) which
satisfy condition (2.F) forms an FK-space. The proof is similar to that of
(3.3). It can even be shown that this FK-space satisfies the condition (2.F).

4. CONVERGENCE FIELDS AND CONVERGENCE FACTORS

In this section we look at the convergence fields H, and boundedness
domains B, of the strong Cesaro summability methods, and at their spaces
of convergence factors dv, and dv,nc,. These spaces are of interest in
themselves. Moreover, the properties [¢B], and [¢K], of these spaces are
important in the proofs of multiplier results in the next section.
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Maddox [13, p. 101] has observed that H, is a BK-space under the
norm

1 m 1/r
- — Y xrh,
el s {75 5 1

where X;=x,+ --- 4+ x;. Under the same norm B, is also a BK-space; this
can easily be shown using Garling’s Theorem [10, p. 998].

(4.1) THEOREM. Let 1 <r < 0. Consider the BK-spaces H, and B, under
the norm | -|| ..
(a) H, satisfies condition (2.E);
(b) B, satisfies condition (2.F);
() H,=(B))ex,s
(d) (Hr)[aB],z(Br)[a'B],Z(Hr)aB=(Br)aB=Br'
Proof. (a) Let xeH, and ¢>0. We show that (1/(n+1))
n_o ls*x — x| s, — 0. Since x e H,, there exists a complex number s such
that (1/(n+1)) X% _, |Xix—s|"—0. By changing the value of x, we may
assume s=0. Choose N such that, for all n>N? {(1/(n+1))

ol Xel 1 <e/3 and (N+1)/(n+1))"" | x| 5, <&/3. Using Minkowski’s
inequality we have for n> N?

1 n . 1/r
{ Z|ux—mu}

+1,5,

S

) el £ Y
o = z<e
nr1) ET U, 2 \3 3
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(b) It is readily shown that

n

5“1,

1 n k+1
< y 9——— "
Y. sup {HXIIB, a1 X,

n+lk ok<m

k
+<1 _%> Xl }<2nxu;,.

(c) Since H, is a closed subspace of B, with the property [¢K],,
H,.: (Br)AD' By (3.2) we have H,-= (Br)[aK],’

(d) By (b) we have B, = (B,),s;,- Since H, is a closed subspace of
B,, we have (H,)i,5,=(B),8,<(H,);5=(B,),p. Finally we show
(B,), < B, by showing || x[| 5 <sup,, l6"x]|| 5. Let ¢ >0. For each n, we can
find m such that |T5 x| <|¥i_o(1—j/(m+1))x]+¢ for k=0,..,n
Then

ry 1/r
X; +8>}
ry ir
} +é&

Thus ||x|| 5, =sup,{(1/(n+ 1)) g _o |1 Xl }" <sup,lle™x] 5. 1

Let a5 = {x = (x)|lim,(1/(n + 1)) X% _o, X exists} be the, series-
sequence convergence field of the Cesaro method of order 1. Jackson [11]
has shown that

,%( ‘m)

<llo™x|l 5, + e <sup lo™x] 5, +e.

m

S{n+1kZ

=0

H* =H™=dy, (4.A)

as well as some more general multiplier results. Maddox [12] had earlier
shown that H? =db, (see also [2]). The identities (4.A) thus also follow
from (4.1) and (3.5).

(4.2) THEOREM. Let 1 <r<oc. Then (dv,);,5, = (dv,),5 = dv,.

Proof. Since H, is a closed subspace of B,, we have H? = B? =db,.
Since H, has the property oK, we have H? = H?* [3]. Thus dv? = (B?)¢ =
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(B)ropy,=B, and dv?=(B?)*=(B,),z=B, [5]. Then dv,-dv}cB,
(actually dv,-dv®=B, since (1,1,1,..)edv,). Hence dv, < (dv?®)¥ =
(dv,)o87, < (dv,),5. Conversely, (dv,),p=(H?),pcH?=dv, by [4,
Proposition 1]. i

Using (3.5)(b) we can now add the following to the multiplier identities
(4.A):

HP=B%=dy,. (4.B)

(4.3) THEOREM. Let 1 <r<o0. Then (dv,)isx, = dv, N cy.

Proof. By (3.2), (dv,)[,x,=(dv,) 4p. Since dv, = 1*, we have (dv,) .p =
I%5p=co. Thus (dv,);,k3, = dv, N c,. Conversely, let yedv,nc, and 0"y =
(Yn+ 1)) Xi_os'y=204_o (1 —k/(n+1)) yre*. We show ye(dv,),p
by showing lim,llc*y— yll4 =0. Let ¢>0 and choose M such that
|yil <¢ whenever k>2" and 5% _ ., 2V (Zow |4y l”)"" <. Let t=2"
and n>M. Then |6’y — pllg, = l6"y = ¥l + TN 0 2V (Xov I(k/(1 4+ 1))
Vior = (e + 1)/t + D)y Y+ TR 2 (o [k + 1)y —
((k+1)/+ D)y )+ X, 2V (o 14y | = S+ 8,4+ S5+ S,
Since yeco we have S, =o0(1). Clearly S,=0(1) and S,<ec.
Finally = S0 2V (o 1K/t + 1)) dyg g + (1/(+ 1) pe )7 <
Z"N;le”/(zzwAyk AT 4 (el 1) Ty 2V 2N ey
U+ 1)) Iy 2V  <e+(g/(1+ 1)) 2" < 2e. |

(4.4) Remark. The spaces dv, do not satisfy (2.F) as can be seen by
considering the sequence (1, 1, 1, ...). It can be shown that y in dv, satisfies
(2.F) if and only if

1 1
Yo lyi 1l =0(27%), ;+;=1. (4.C)
This is equivalent to the condition
Z (k+1)"" 1y =0(1). (4.D)

n+1
Similarly, a sequence y in dv, satisfies the condition (2.E) if and only if

1 1
Toleal=o@™),  —+-=1, (4E)

which is equivalent to

=o(1). (4F)
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5. MULTIPLIER RESULTS

If E and F are FK-spaces, we write
E-F={x-y:=(xy)|x€E, yeF},
(E->F)={y=(y:)|x-yeFforall xe E}.

The set E - F need not be a linear space. The set (E — F) is a sequence space
but it need not be an FK-space. However, if £ and F are BK-spaces, then
(E— F) is a BK-space under the norm || y|| =sup, <; Xyl ¢

An FK-space E containing ¢ has the property AB if and only if E=bv - E
and it has the property AK if and only if E=(bv¢o)- E [10]. Similarly
E has the property B if and only if E=¢q - E and it has the property oK
if and only if E=(gncy)-E [3]. Now we show that strong Cesaro
summability and strong Cesaro boundedness for an FK-space are also
equivalent to multiplier statements.

(5.1) THEOREM. Let E be an FK-space containing ¢ with a defining
Sfamily of continuous seminorms p' < p*< p>< ---. Let Ay E' such that
pM(x)=sup,. 4, | f(x)| for all xe E. For 1 <r< oo the following statements
are equivalent:

(a) x€Ep.p;

(b) sup sup Z |f(s*x)|"< o0 forall N;
n  feAy n+

(c) dv,-xcE.

Proof. (a)=(b). This is immediate. (b)=-(c). Suppose (b) and let
yedv,, We show yp-xeE by showing that o'(y-x)=(1/(t+1))
>t _os¥(y-x) is a Cauchy sequence in E for t=2". Using summation by
parts we obtain o'(y-x)=3%_o {(1—k/(t+1)) Ay +(1/(t+1)) yp o} s5x
For s=2"<2"=t and fe Ay we have

|f(e'(y-x)=a*(y - x))

t
<(s771) 2 et sl 580

+ X

k ) 1
| —— Ayk+ Vi
k:s+,< t+1 +1 7!

1 m
S3m L Zo Kldy_ i +13d) 1/(5)]
j=0

/(")

i k |
v 3 n((1-m) a4y et

J=m+1 t+
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Using Holder’s inequality on the sums >',; we obtain

2im i (X (kldye_i| + [ y)P 7 {Z o 1 f(skx)| PP

n k 1 P P’
(-
+j=§+l{22 (( t+1>| Vi 1|+ |)’k|> }

x {Zy I f(s5x) 7}
{21+1(221 lAyk 1|p)l/p +maX2/ |yk|} 2(j+1)/p N(x)

ip

2
DR NPT

maxﬂ'}’kl} 20+ Drp ¥ (x)

2M+2
<piv(x){ 5 (Z 27 (T 1Ay (7Y +sup|yk|>
J

(4 T 2 4170 4 sup 1)

j=M+1 k>2

+< S RS, [y 17)" 42 sup w)}.

i=m+ 1 k>2M

This can be made arbitrarily small by choosing M and m sufficiently
large. Thus p™(a'(y - x)—0°(y - X)) =supye 4, | f(0'(y - X)—0°(y - x))| - 0 as
n, m— 0. Since E is complete and has continuous coordinate functionals,
o'(y-x) converges to y-x. This shows dv, -x < E.

(c)=(a). Suppose dv,-x< E. Then by the closed graph theorem,
T.(y):=y-x is a continuous map from dv, to E [14]. Let p be a
continuous seminorm on E. Then po T, is a continuous seminorm on dv,.
Thus p(T.(y)) <K, Iyl for some constant K,. Hence for fe E' with
| /1< p we have fo T, edv; and | f(T.(¥))] < p(T(¥)) < K, | ¥ v, Since dv,
has the property [6B],, we have

sup — |f(s™(x- )"
yi<ph +1 Z
= sup Y, A feTo(s"V)I" < 0.
Ifl<p”+ k=0

This shows that every sequence in v, - x has the property [6B],. |

(5.2) THEOREM. Let E be an FK-space containing ¢ and let 1 <r < 0.
Then E has the property [6B], if and only if E=dv,-E
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Proof. If E has the property [6B],, then by (5.1) (a)=(c) we have
dv, - E < E. Since the sequence (1, 1,...) is in dv,, the opposite inclusion is
immediate. The converse follows from (5.1) (c)=(a). |

(5.3) THEOREM. Let E be an FK-space containing ¢ and let 1 <r < co.
Then E has the property [6K], if and only if E=(dv,Ncy) - E.

Proof. Suppose E has the property [6K],. Then E has the property oK.
It was shown in [3] that if E has ¢B then E_, = (g n¢,)- E. For the same
reasons (dv, ).k, = (Av,),x = (g N ¢y) -dv, = dv, N ¢y. Thus since E=dv,-E
by (5.2), we have E=FE_=(qncy) - E=(gncy)-(dv,- E)={(dv,n¢cy)-E.
Conversely suppose E=(dv,nc¢y)-E. For each xeE, T (y)=y-x1is a
continuous map from dv, N ¢, into E. Let p be a continuous seminorm on
E. As in the proof of (5.1), there exists a constant K, such that
Supy i< (1/(n+ 1)) T4 _o |f(s"(x - ¥) = x- p)l"=sup <, (1/(n+1)) T4 _,
[fo To(8"y— )" <SPy gy <o 1, (1/(n41)) T | g(s"y— )1 Since dv, r¢q
has the property [oK],, this tends to 0. ||

The following is a consequence of (3.4), (3.5), and (5.2).

(5.4) ProPOSITION. Let E be an FK-space containing ¢ and let 1 < r < o0.
Then the space E gy is an FK-space having the property [oB],.

(5.5) Remark. Multiplier statements corresponding to (5.2) (respec-
tively (5.3)) do not hold for spaces satisfying condition (2.F) (respectively
condition (2.E)) with respect to the multipliers dv, (respectively dv, N ¢,) or
with respect to the sequences satisfying conditions (4.C) (respectively
condition (4.E)). The spaces dv, and H, serve as counterexamples.
However, we can obtain a partial result which we give without proof.

(5.6) PROPOSITION. Let E be an FK-space containing ¢, let 1 <r< oo,
and let x be a sequence. If x-ye E for every sequence y in dv, satisfying
condition (2.E), then the sequences x - y satisfy (2.F).

6. FUNCTION SPACES

We now consider spaces of 2z-periodic functions or distributions g for
which Fourier coefficients (k) are defined [8]. Sequences will be defined
on the integers, and the sequences in ¢, dv,, and bv will be assumed to be
symmetric (that is, y,=y_,). Here ¢ is the function e*(x)=e** and
5"g(x)= Z|k| <n 8(k) ™.

640/68/1-6
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Zygmund [ 15, Theorem XII1.7.3] shows that for every function g in C,,
and 1 <r< oo we have

n+1 z |s*g(x)— g(x)]">0  uniformly for all x. (6.A)

Since the norm on C,, is | g|® =sup,|g(x)|, this is equivalent to saying
that C,, has the property [oK],, where A, = {F,eC5|F.(g):=g(x),
0<x<2n} as defined by (2 .A). This shows by (5.2) and (5.3) that for all
1<r< oo, we have

do,-Cyp=Co = (dv, 0 cg) - Can (6.B)

Since (CZn - CZn) = (l:;n - E;_n) = (M27r - M2n) = (I:; - I:;) = Mzn (8,
Vol. 2, p. 246], an immediate consequence is the result dv, = M,, for all
I€r<ow [6] We also obtain Fomin’s integrability result dv,ncy=
(dv, )ADC(MZ,[)AD—L [6,9] Since e=(.,1,1,1,..)edv,, we have also
dv, L3 =L, dv,-M,,=M,,, and dv, - L;—L;‘,’[

Conversely, our multiplier results show that (6.A) can be obtained from
Fomin’s integrability result.

Furthermore, (M,,)p=L. and (LZ),,=Cs.. By (52), (3.2), and
(5.3) we have the following.

(6.1) THEOREM. Let 1<r<o. The spaces C,, and L)  have the
property {6K],. The spaces L5, and M,, have the property [6B],.

(6.2) Remark. Theorem 6.1 for L), is stronger than the theorem of
Fejér’s which states for fe L) ,

T

=o0(1) (n—> o).

n+1

This is equivalent to

sup
Fed

1 i F'(S"f—f)’=0(1) (n— c0)
k=0

for some subset A of the dual of L} . Since the dual of L;, is LY and the
continuous linear functionals on L) are of the form F,(f)={" g-f for
ge L3, we have

sup
hel® <1 ”‘H

fjn -(skf—f)1=o(1) (n— o0).
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Theorem 6.1 shows that the absolute value can be taken inside the
summation and raised to any power 1 <r< oo to obtain

rzo(l) (n— o0). (6.C)

a1

One could consider direct proofs of (6.C) from (6.A) but the main idea
here is the equivalence of convergence theorems and multiplier theorems.

(6.3) Remark. The following example due N. Tanovi¢-Miller shows
that (6.C) cannot be further strengthened by taking the supremum inside
the summation. That is, the property [6K], cannot be strengthened to the
property (2.E). The example shows that for each 1 <r< oo, there exist
fe L), such that

f g-(s

Isf = flu#0(1)  (n— o).
k=0

n

sup
n+1, 70 o<1

It is sufficient to let r =1, since by Hoélder’s inequality

n . 1 n , 1/r
2 18"/ = Sl s <(m EO Ilskf—fHu) :

Consider the cosine series (1/2) aq+ Y., a, cos kx, where ay=a,; =0,
and q, = 1/ /logk, (k= 2). We have a, |0, kda, - 0, and
3, (k+1)|4%,] < oo since da, ~ 1/k log** k, and 4%a, ~ 1/k* log** k. By
a classical result of Kolmogorov [7, Vol. 1, 7.3.1 and 7.3.2] the cosine
series converges to

f (k+1) A%a, F,(x) (6.D)

(F, denotes the Fejér kernel) pointwise for x#0 (mod 2r), fe L}, and
(6.D) is the Fourier series of /' (moreover, f > 0). By partial summation and
by (6.D), we have

s"f(x) = f(x)=3nda, F, (x)+3a,D,(x)

-3 ozo: (k+ 1) 4%a, F,(x)
1

k=n—
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(D,, denotes the Dirichlet kernel) for x #0 (mod 2x). Thus
Is"f = fll g = 3lanl 1Dl = 301 da, 1] 1F L,

—3 Y (k+ 1)Ll IIF,ll e
k=n-1

Since |F,|l .1 =1, given ¢> 0, there exists N such that for n> N,

[

1
I8 = =5 lanl 1Dl i =3

Hence (1/(n+ 1) Xi_o Is"f =l = (1/(n+ 1)) X5 _ v lawl [ Dell i —&/2.
But | D, .1~ (4/n*)logk, and consequently (1/(n+1))3%_o s — Sl
- 0, (n— ).

Since LS =(L5),5 and M,, =(M,,),5, we have
L3, =(Can)iom, and M, = (L;n)[aB],' (6.E)
From (3.6) and the first identity in (6.E) we obtain the following.

(6.4) THEOREM. Let geL) and 1<r<co. Then ge Ly if and only if

1 n . 1/r
© = — T <.
lgl” =sup {H i kgo |s“g(x)| } o0

n,x

Furthermore ||| ¥ is a defining norm on L3

We can obtain a similar result for the space M,, from the second identity
in (6.E).

Since the continuous linear functionals on L) are of the form
Fi(g)=[3f-g for feLZ,, we have |gll!=supy = <, sup,{(1/(n+1))
Sr_o a7 s5(f- )"}V for ge L},. Consequently we obtain the following.

(6.5) THEOREM. For each ge L) and 1 <r < oo we have

1 n
sup sup Y
et o R+

’
< 0.

[T

Finally, since (£2)*=(C,,)?=M,, and (M,,)?=(L))?=L% we
obtain the following from (3.4).

(6.6) THEOREM. For each 1<r< oo, I:;"j,=(f,§n—+B,) and M,,=
(L5 - B,)
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