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This paper examines strong Cesaro summability and strong Cesaro sectional
boundedness of order 1 .::; r < eX) in Banach and Frechet spaces E. The major result
shows these topological properties of E to be equivalent to multiplier properties of
the form E = (dv, nco)' E and E = dv,' E, where dv, is the space of sequences of
dyadic variation of order r defined in this paper. These multiplier results show that
several classical spaces of Fourier series have these properties. This introduces a
new form of convergence in norm for Fourier series. The space L~., for example,
has strong Cesaro summability of all orders I .::; r < eX). Fejer's Theorem states that
for allfEL~., (1/(n+1))IILZ~oskf-fIILl=0(1), (n~eX)), where skfis the kth
partial sum of the Fourier series off; since the dual of L1. is L'f:" this is equivalent
to SUPllgIIL~,,1 (1/(n+1))ILZ~oH' g.(skf-f)l=o(I), (n~eX)). As a consequence
of strong Cesaro summability, the absolute value can be taken inside the
summation and raised to any power I.::; r < 00. Namely, for all fE L~n'

I n If2. I'sup n+1 I g.(skf-f) =0(1)
IlgIlLx.::;;1 k=O 0

(n ~ ro).

The supremum, however, cannot be taken inside the summation. © 1992 Academic

Press, Inc.

1. INTRODUCTION

(l.A)

(I.B)

(I.C)

(I.D)

(Kronecker b) for all k and j;

for all j implies x = O.

J}(e k
) = bjk

J}(x)=O

(the space of continuous linear functionals) for all j;

A Frechet space is a complete metrizable locally convex space; for
example, every Banach space is a Frechet space. Consider a Frechet space
E with a total biorthogonal sequence {e k

, J}} [I]. That is,

ek E E for all k;
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Generally we assume that the indices k and j range over the nonnegative
integers but when discussing Fourier series of 2n-periodic functions the
indices will range over all integers. Each x in E can be identified with the
sequence x= (xo, Xl> Xl' ... ) where x j = f;(x). Let E= {x IXE E}. E and E
are isometric and isomorphic if, for each defining seminorm PEon E, we
define Pi:(x) = PE(X). If E is a Banach space we define Ilxlli:= IlxiI E . By
conditions (1.B) and (1.C), E has continuous coordinate functionals. Such
a Frechet (respectively Banach) sequence space is called an FK-space
(respectively, BK-space). By condition (1.A), E contains the space of finite
sequences

</J := {x = (xd IXk = 0 except for finitely many k}.

For simplicity, most theorems in this paper will be stated for FK-spaces
(that is, E =E where, for each k, ek is the sequence with I in the k th
position and 0 elsewhere); however, when considering function spaces
it will often be more convenient to work directly on E instead of the
corresponding FK-space E.

An element X in E has the property of sectional convergence (denoted
AK) in E if the sections snx :=xoeO+xle l + ... +xnen converge to x (as
n -> (0) with respect to the topology of E. In case the biorthogonal
sequence ranges over all integers, we define snx := Llkl <:;n Xkek for
n = 0, 1, 2, .... More generally, an element x, not necessarily in E, has the
property of sectional boundedness (denoted AB) in E if the sections snx are
bounded in E. Similarly an element x in E has the property of Cesaro
sectional convergence (denoted aK) in E if the Cesaro sections
anx := (sox + ... + snx)/(n + 1) converge to x (as n -> (0), with respect to
the topology of E. This is equivalent to

1 n

lim -- L (SkX-X)=O.
n~oon+lk=o

An element x, not necessarily in E, has the property of Cesaro sectional
boundedness (denoted aB) in E if SUPn p(anx) < 00 for all continuous
seminorms P on E.

Let 1~ r < 00. Section 2 contains basic definitions and introduces the
properties of strong Cesaro summability of order r (denoted [aK],) and
strong Cesaro boundedness of order r (denoted [aB],) in Frechet spaces.
These properties are stronger than aK and aB, respectively, but are weaker
than AK and AB, respectively. Section 3 contains general results on strong
Cesaro summability and strong Cesaro boundedness in Frechet spaces. In
Section 4 specific spaces are considered; namely the convergence fields H,
and boundedness domains B, of the strong Cesaro summability methods,
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and their spaces of convergence factors dV r and dV r (\ Co' In Section 5 we
show the equivalence of the properties [aBJr and [aKJr to multiplier
properties with respect to the spaces dV r and dV r (\ Co' In particular, a
Frechet space E containing ,p has the property [aBJr if and only if
E = dVr .E, and it has the property [aKJr if and only if E = (dvr (\ co) .E.
In Section 6 we consider function spaces and show how these multiplier
results can be used to obtain a new form of convergence for Fourier
series. For example, we show that the spaces Li" (1::::; P < (0) and C2"

(2n-periodic continuous functions) have the property [aKJr for all rand
the spaces L:r:r and M 2" (2n-periodic Radon measures) have the property
[aRJr for all r. Fejer's theorem for L~" is equivalent to the property aK
but, for all r, the property [aKJr is stronger.

I thank M. Ash, G. Goes, and N. Tanovic-Miller for helpful suggestions.
In particular, the example in (6.3) is due to N. Tanovic-Miller.

2. DEFINITIONS

Let E be an FK-space containing ,p. By the Hahn-Banach theorem each
continuous seminorm P can be expressed in the form

p(x) = sup If(x)1
lEAp

(2.A)

for some subset A p of E'. Thus an element x of E has the property aK if

lim sup \f(_1_1 ±(SkX-X))1 =0
n~ 00 lEAp n+ k=O

for every continuous seminorm p. Let 1::::; r < 00. We define the property of
strong Cesaro summability of order r (denoted [aKJ r) for x E E by

1 n

lim sup-- L If(SkX-XW=O
n ~ 00 IE Ap n + 1 k = 0

(2.B)

for every continuous seminorm p. Similarly a formal expansion
x = L:%,,= 0 xkek with x= (xo, Xl' ... ), but xnot necessarily in E, has strong
Cesaro boundedness of order r (denoted [aBJr) in E if

{
1 n } Ilr

Pr(x) := sup sup --1 L If(skx)lr < 00
n lEAp n + k=O

(2.C)

for each continuous seminorm p. If E is a Banach space, we write IIxll r

instead of Pr(x).
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A continuous seminorm P on E does not uniquely determine the set Ap •

For now, we will assume that

(2.D)

however, a proper subset of (2.D) is often more natural. For example, if
E = C2" with norm II gil 00 = SUPy Ig(y)l, it is natural to choose A 11.11'" to be
the set offy defined bY!v(g)=g(y), O::::;y::::;2n. Theorems (3.1) and (3.3)
(or more explicitly, (5.1)) show that the choice of A p does not affect the
definitions of [oKJr and [oBJr' We write

E[<>K],:= {xEElx has the property [aKJr in E},

E[<>s],:= {x= k~O xkek/x has the property [uBJr in E},

EAD := {xEElx is in the closure of ¢J in E},

and similarly for EAK, EAS , E<>K' and E<>s. Note that the spaces E[<>s]"
E<>s, and EAR need not be subsets of E.

We say that E has the property [uKJr if E= E[<>K],; E has the property
[uBJr if EcE[<>s],; E has the property AD if E=EAD ; etc.

Holder's inequality applied to (2.C) shows that Pr(x)::::; Ps(x) for
l~r~s<oo. Similarly it can be shown th;lt [uK). implies [uKJr and
[uB). implies [uBJr, if 1 ::::;r::::;s< 00. It is clear from the definitions that
[uKJr implies both uK and [uBJr. By an argument similar to that showing
that ordinary summability implies Cesaro summability, it can be shown
that, for all r, the property AK in E implies

lim ---.!.-1 f p(Skx-xY=O
n~oon+ k~O

for all continuous seminorms p.

This in turn implies [aKJr. Similarly the property AB implies

{
In }Ur

sup --1 I p(Skxy < 00
n n + k~O

for all continuous seminorms p

(2.E)

(2.F)

which implies [uBJr' The converse implications are not true as shown by
examples in (4.4) and (6.3).

It will be shown in Theorem 3.1 that an FK-space E has the property
[uK]r if and only if it has the properties AD and [uBJr'
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The convergence field for strong Cesaro summability of order r IS

denoted by

where Xk=xo+ ... +Xk (or Xk=LljlaXj if the index k ranges over all
integers) and the boundedness domain for strong Cesarosummability of
order r is

Below we list some useful BK-spaces and their norms. We use the
notation LlYk = Yk - Yk+ 1, Ll 2Yk = LlYk - LlYk+ 1> max2n = max 2n .;k< 2n+ I,

and L2n = L~n~~; I. If the index k ranges over the integers we assume that
Yk = Y -k for the spaces bv, dVn and q listed below. The space of bounded
sequences is

and the space of null sequences

is a closed subspace of 100
• The space of sequences of bounded variation is

The spaces of sequences of dyadic variation are defined as

dv = dVI = {Y = (ydillylldv

:= n~o 2
n

max2nlLlYk_ll + suplYkI < oo},

dv, = {Y = (ydlllYlldv r

:= n~o 2n
/, (L2nILlYk_II')I/s + suplYkI < oo}
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for 1 < r < 00 and l/r + l/s = 1. It is natural to define dV:JJ = bv. The space
of bounded quasiconvex sequences is

We have q c dv c dVrc dv s c bv for 1~ r~ s ~ 00 [6,9].

3. GENERAL RESULTS

Zeller has shown that an FK-space E containing r/J has the property AK
if and only if it has the properties AB and AD. A corresponding theorem
for aK was proved in [3]. Using a similar r,/3 argument we obtain it for
the property [aK] r :

(3.1) THEOREM. Let 1~ r < 00. An FK-space E containing r/J has the
property [aKJr if and only if it has the properties [aBJr and AD.

Proof Let x E E have the property [aKJr and let p be a con
tinuous seminorm on E. The property [aB]r follows immediately. For
each n, anx E r/J and p(anx - x) =SUP/E A

p
If(l/(n + 1)) I~ =0 (SkX - x))1 ~

sUPfEAp(l/(n+l))I~=olf(skx-x)I--+-O as n--+-oo. Thus x has the
property AD. Conversely, suppose E has the properties AD and [aBJr.
Since for all XEE we have Pr(x)=suPnsuPrEAp{(l/(n+l))I~=o

If(SkXW} I/r < 00, the seminorm Pr is lower semicontinuous and hence
continuous on E (Theorem 7.1.1 of [7]). Let XEE and r,>O. Since
E has the property AD we can find y E r/J such that p(x - y) < r,/3 and
Pr(x - y) < r,/3. We can choose n sufficiently large so that
{( l/(n + 1)) I~ = 0 p(Sky - y)'} I/r < r,/3. Let IfI~ p. Then by Minkowski's
inequality

{
In }I~

-1 L If(skx-xW
n + k~O

{
In } I/r {I n } I/r

~ -1 L If(skx-sky)lr + - I If(Sky - y)lr
n+ k=O n+ 1 k=O

{
In } I/r

+ -1 L If(y-xW
n + k=O

{
In } I/r

<Pr(x-y)+ --1 I p(Sky _ y )' +p(y-x)<r,.
n + k=O

640/68/1-5
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Taking the supremum over all IfI~ p, we see that x has the property
[aK]r' I

(3.2) COROLLARY. Let 1~ r < 00. If an FK-space containing r/J has the
property [aBl, then ECo-K), = EAD .

Proof E AD , being a closed subspace of E, is an FK-space with the
properties AD and [aBl. By (3.1) we have EADeE[o-K),. The inclusion
E[o-K),eEAD is shown in the proof of (3.1). I

For FK-spaces E and F, define

and

If E is a BK-space, then E'P can be identified with the dual space of EAD
[5] and is thus a BK-space under the dual norm of E AD . However, for an
FK-space E, the space E'P need not be an FK-space (the space E = w of all
complex valued sequences is such an example). The proof of the following
theorem is consequently more difficult than in the BK-space case.

(3.3) THEOREM. Let I ~ r < CfJ and let E be an FK-space containing r/J.
A sequence x has the property [aBl with respect to E if and only if

for every fE E'.

Proof The proof of (=) is obvious. For the converse, we use a
uniform boundedness argument. Suppose Sf(X) < 00 for allfEE'. Letp be
a continuous seminorm on E and let Ep be the space E under the locally
convex topology defined by the single seminorm p. Then E~ is a Banach
space with unit ball V = {IE E~ Ilfl ~ p}. (Actually E; is a BK-space with
E; e E'P). Let B = {IE E~ Isf(X) ~ I}. B is clearly absolutely convex and
closed. B is radial (absorbing) since sf(x) < 00 for all fE E~. Thus B is a
barrel in E~. Since E~ is barreled, B is a neighborhood of O. Thus there
exists an N>O such that (lIN) VeB. Then sUPlfl",psf(x)~N. I

(3.4) COROLLARY. Let 1~r< 00 and let E be an FK-space containing r/J.
Then
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(3.5) COROLLARY. Let I ~ r < 00 and let E be an FK-space containing ¢J.
Then

(a) E has the property [aRl if and only if £'I' = E B,;

(b) E has the property [aBl if and only if E[aB], = (EB,)B,;

(c) if E has the property [aKJr, then E'fJ = E H
,.

Proof Let (X· Yh = XoYo + ... + XkYk and define

Eab:={Y=(YdISUp_I_11 t (X'Y)kl <00 for all XEE}.
n n + k~O

It was shown in [4, Theorem 3] that for any FK-space E containing ¢J we
have E ab e E'fJ. Clearly E B, e E ab e E'fJ. Thus (a) follows immediately from
(3.3). Statement (b) follows from (a), (3.4), and Ee (EB,)B,. Statement (c)
is a consequence of E H

, e E B, e E'fJ and the definition of [oKlo I

(3.6) THEOREM. Let I ~ r < 00. If E is an FK-space containing ¢J
generated by a set of seminorms P, then E[aB], is an FK-space under the
topology generated by the set of seminorms {Pr IpEP}.

Proof It is shown in [3] that EaB is an FK-space under the seminorms
qp(x) := SUPn p((l/(n + I)) LZ~o SkX ). We have qp ~ PI by the definition of
PI; also Pi ~Pr by Holder's inequality. Since E[aB], = {xEEaBIPr(x)< 00

VpEP} it follows from Garling's Theorem [10, p. 998] that E[aB], is an
FK-space. I

(3.7) Remark. We will show in (5.3) that for every FK-space E
containing ¢J, the space E[aB], always has the property [aRl. However, an
FK-space E (containing ¢J) with the property [aBl need not be a closed
subspace of E [aB],' Thus if the topology of E is generated by a set of semi
norms P, the topology generated by the set of seminorms {Pr IpEP} need
not make E an FK-space.

(3.8) Remark. If E is an FK-space containing ¢J, it can be shown that
the set of all sequences x (not restricted to those belonging to E) which
satisfy condition (2.F) forms an FK-space. The proof is similar to that of
(3.3). It can even be shown that this FK-space satisfies the condition (2.F).

4. CONVERGENCE FIELDS AND CONVERGENCE FACTORS

In this section we look at the convergence fields H r and boundedness
domains B r of the strong Cesaro summability methods, and at their spaces
of convergence factors dU r and dU r n co. These spaces are of interest in
themselves. Moreover, the properties [aRl and [aKJr of these spaces are
important in the proofs of multiplier results in the next section.
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Maddox [13, p. 101] has observed that Hr is a BK-space under the
norm

{
1m }I/r

IlxIIB'=S~P m+lj~OIXX '

where Xj = Xo + ... +Xj' Under the same norm B r is also a BK-space; this
can easily be shown using Garling's Theorem [to, p. 998].

(4.1) THEOREM. Let 1~ r < 00. Consider the BK-spaces Hr and Br under
the norm II ·11 B,'

(a) Hr satisfies condition (2.E);

(b) Br satisfies condition (2.F);

(c) Hr=(Br)[uKJ,;

(d) (Hr)[uBJ, = (Br)[uBJ, = (Hr)uB = (Br)uB = Br.

Proof (a) Let x E Hr and e> O. We show that (l/(n + 1))
L:Z=o Ilskx - xll~, ~ O. Since x E H" there exists a complex number s such
that (1/(n+1))LZ~0IXk-slr~0. By changing the value of Xo we may
assume s = O. Choose N such that, for all n > N 2

, {(l/(n + 1))
L:Z =0 IXkn I/r < e/3 and ((N+1)/(n +1))I/r Ilxll B, < e/l Using Minkowski's
inequality we have for n > N 2

{
1 n }I#-- L Ilskx-xll~,

n + 1 k~O

{
1 n 1 m } I/r

= - L sup -- L IXj-Xklr
n+ 1k~om>km+ 1 j=k+1

{
1 n 1 m } I/r

~ - L sup -- L IXX
n+ 1k~om>km+ 1 j=k+1

{
1 n 1 m } I/r

+ - L sup-- L IXkl r
n+ 1 k=om>km+ 1 j=k+1

{
1 N } I/r

~ n+ 1k~O Ilxll~,

{
1 n 1 m } I/r

+ - L sup -- L IXX
n+ 1 k=N+I m>k>Nm+ 1j~O
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(b) It is readily shown that

1 n
- L Ilskxll r

n+ 1k=O B,

1 n { k+l
~-+1 L sup Ilxll~" -+1 Ilxll~,

n k~ok<m m

65

(c) Since H r is a closed subspace of Br with the property [oK]"
Hr= (Br)AD' By (3.2) we have Hr= (BrhaK],.

(d) By (b) we have Brc (BrhaB],. Since Hr is a closed subspace of
B" we have (Hr)[uB], = (Br)[aB], C (Hr)uB = (Br)aB' Finally we show
(Br)uB c Br by showing IlxlI B,~ sUPm IlamxII B,. Let E > O. For each n, we can
find m such that IL;~o xii < IL;~o (l - j/(m + 1)) x) + E for k = 0, ..., n.
Then

{
1 n (I k ( j) I )r}l/r

< n+1k~O i~O 1-m+l xi +E

m

Thus IlxlI B, = sUPn{(I/(n + 1)) LZ=oIXklr}l/r ~ sUPm IlarnxIIB,· I
Let as = {x = (xk)/limn(l/(n + 1))LZ=oXk exists} be the, series

sequence convergence field of the Cesaro method of order 1. Jackson [11]
has shown that

H~'= H~s = dVr (4.A)

as well as some more general multiplier results. Maddox [12] had earlier
shown that H: = dVr (see also [2]). The identities (4.A) thus also follow
from (4.1) and (3.5).

(4.2) THEOREM. Let 1 ~ r < 00. Then (dvrhuB], = (dvr)aB = dVr.

Proof Since H r is a closed subspace of B" we have H~ = B~ = dVr.
Since H r has the property aK, we have H~ = H~s [3]. Thus dv~'= (B~)<P =
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(Brh"B], = Br and dv~ = (B~)<P = (Br)"B = Br [5]. Then dv r · dv~ c Br
(actually dvr · dv~ = Br since (1,1,1, ... ) E dv r). Hence dV rC (dV~)B, =
(dvrh"B], c (dVr)"B' Conversely, (dVr)"B = (H~)"B c H~ = dV r by [4,
Proposition 1]. I

Using (3.5)(b) we can now add the following to the multiplier identities
(4.A):

(4.B)

(4.3) THEOREM. Let 1~r< 00. Then (dvrh"K],=dvrnco'

Proof By (3.2), (dVr)["K], = (dVr)AD' Since dV rc FJ, we have (dVr)AD c

I'JD=co' Thus (dVr)["K],cdvrnco. Conversely, let yEdvrnco and any =
(1/(n+1))L~~oSkY=L~~o(1-k/(n+1))Ykek. We show yE(dvr)AD
by showing limnlla 2ny- Ylldv,=O. Let e>O and choose M such that
IYkl <e whenever k>2 M and L~~M+12N/r(L2NILlYkn w <e. Let t=2n

and n>M. Then IlatY-Ylldv,=llatY-Ylloo+L~:d2N/r(L2NI(k/(t+1))

Yk-l - ((k + l)/(t + 1))Ykn w + L~·::}M 2N/r(L2N I(k/(t + 1)) Yk-[ 
((k + 1)/(t + 1)) Ykn w + L~~n 2N/r(L2N ILlYk-l n w = 51 + 52 + 53 + 54'
Since yEco we have 5[=0(1). Clearly 5 2 =0(1) and 5 4 <e.
Finally 53 = L~-::"IM 2N/r(L2N \(k/(t + 1)) LlYk-l + O/(t + 1)) Yk nw ~
L::"-::,,IM2N/r(L2NILlYk_lnw + (e/(t+1))L~-::"IM2N/r.2(N+l)/r' < e+
(e/(t + 1)n::~-::"lM 2N

+ 1 < e + (e/(t + 1))2n < 2e. I
(4.4) Remark. The spaces dV r do not satisfy (2.F) as can be seen by

considering the sequence (1, 1, 1, ... ). It can be shown that Y in dv r satisfies
(2.F) if and only if

This is equivalent to the condition

1 1
-+-=1.
r s

(4.C)

(4.0)

Similarly, a sequence Y in dV r satisfies the condition (2.E) if and only if

which is equivalent to

1 1
-+-= 1,
r s

(4.E)

_1-1 i (k+ 1)1/s Ihl =0(1).
n + k=O

(4.F)
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5. MULTIPLIER RESULTS
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If E and Fare FK-spaces, we write

E 1= {x·y:= (xkyd IXE E, yEF},

(E-+F)= {Y=(Yk)lx'YEFfor all xEE}.

The set E· F need not be a linear space. The set (E -+ F) is a sequence space
but it need not be an FK-space. However, if E and Fare BK-spaces, then
(E-+F) is a BK-space under the norm Ilyll =suPUxliE'O Ilx· yIIF'

An FK-space E containing ¢J has the property AB if and only if E = bv . E
and it has the property AK if and only if E=(bvIlCo)·E [10]. Similarly
E has the property (JB if and only if E=q·E and it has the property (JK
if and only if E = (q 11 co) . E [3]. Now we show that strong Cesaro
summability and strong Cesaro boundedness for an FK-space are also
equivalent to multiplier statements.

(5.1) THEOREM. Let E be an FK-space containing ¢J with a defining
family of continuous seminorms pi :( p2 :( p3:( .... Let AN C E' such that
pN(X) = sUPrEAN If(x)1 for all x E E. For 1:( r < 00 the following statements
are equivalent:

(a)

(b)

(c)

XEE[I1BJ,;

dvr·xcE.

for all N;

Proof (a) ~ (b ). This is immediate. (b)~ (c). Suppose (b) and let
yEdvr. We show y,xEE by showing that (Jf(y·x)=(lj(t+l))
L~ ~ 0 Sk(y . x) is a Cauchy sequence in E for t = 2m

• Using summation by
parts we obtain (Jf(y·X) = I~=o {(l-kj(t+ 1)) LlYk + (lj(t +1)) Yk+ d SkX.
For s=2m <2n =t andfEA N we have

If((Jf(y. x) - (J'(y. x))1

( 1 1)':( -1--1 L IkLlYk- Yk+lllf(skx)1
s+ t+ k=O

+k=~+ll(l- t: 1) LlYk+ t~ 1Yk+lllf(skX)1

1 m

:(2m L L2J(kILlYk_ll+IYkI)lf(skx )1
j=O

+j~t+ 1 L21 ((1- t: 1) ILlYk-11 + t ~ 1IYkI) If(skx)l.
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Using HOlder's inequality on the sums L2J we obtain

21m f {L2J(kIAYk-11 + IYkW'} lIP' {L21 If(Skx )IP}l/
p

j=O

+j~t+l {L2J((1- t: 1) IAYk-11 + t~ 1IYklrr/p,

X {L2JIf(Skx)IP}I/p

~21m f {2 j+1(L2J IAYk_lIP')I/p' +max 21 IYkl} 2(j+I)/pp~(x)
j~O

+j~t+l {(L2JIAYk_lI P')I/P'+ t
2
:

P
1max2JIYkI}2(j+lllPp~(X)

~p~(x) {2::2(~O 2j/p (L2JIAYk_lIP')I/p' +SUPIYkl)

+(4 f 2j/P(L2JIAYk_lI P')lIP'+ sup IYkl)
j~ M+ 1 k> 2M

+( ± 2j/P(L2J IAYk-11 P')lIP' +2 sup IYkl)}.
j~m+ 1 k>2M

This can be made arbitrarily small by choosing M and m sufficiently
large. Thus pN(u/(y . x) - US(y . x)) = SUPfE AN If( u/(y . x) - US(y . x))1 -40 as
n, m -400. Since E is complete and has continuous coordinate functionals,
u/(y·x) converges to y·x. This shows dvr·xcE.

(c) => (a). Suppose dv r • X C E. Then by the closed graph theorem,
TAy):= y·x is a continuous map from dVr to E [14]. Let p be a
continuous seminorm on E. Then po Tx is a continuous seminorm on dv r •

Thus p(Tx(Y)) ~ KpllYlldv, for some constant Kp. Hence for fE E' with
IfI~ p we have fa Tx E dv~ and If(Tx(Y))1 ~ p(TAy)) ~ KpIIYlldv,. Since dVr
has the property [uB]" we have

1 n

sup -1 L If(sn(x· y))l r
If I <;,p n + k~O

1 n

= sup - L Ifo Tx(sny)lr< 00.
If I <;, p n + 1 k = 0

This shows that every sequence in dvr · x has the property [uB]r' I

(5.2) THEOREM. Let E be an FK-space containing tP and let 1~ r < 00.
Then E has the property [uB]r if and only if E = dvr . E.
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Proof If E has the property [aB]" then by (5.1) (a) ~ (c) we have
dvr · E c E. Since the sequence (1, 1, ... ) is in dv" the opposite inclusion is
immediate. The converse follows from (5.1) (c) ~ (a). I

(5.3) THEOREM. Let E be an FK-space containing r/J and let 1~r< 00.

Then E has the property [oKJr if and only if E= (dvrnco)' E.

Proof Suppose E has the property [I7K]r' Then E has the property rIK.
It was shown in [3] that if E has I7B then E"K = (q nco) . E. For the same
reasons (dVr)["KJ,=(dvr)"K=(qnco)·dvr=dvrnco. Thus since E=dvr·E
by (5.2), we have E=E"K=(qnco)·E=(qnco)·(dvr·E)=(dvrnco)·E.
Conversely suppose E=(dvrnco)·E. For each xEE, T,(y)=y,x is a
continuous map from dV r n Co into E. Let p be a continuous seminorm on
E. As in the proof of (5.1), there exists a constant K p such that
sUPlfl,,; p (1/(n + 1)) L:Z ~o If(sn(x . y) - x· y)1 r= sUPlfl,,; p (1/(n + 1)) LZ ~ 0

If 0 TAsny - y)lr ~SUPIKI";Kplllld", (l/(n+ 1)) L:Z=o Ig(sny - y)l r. Since dvrn Co
has the property [rIK] r' this tends to O. I

The following is a consequence of (3.4), (3.5), and (5.2).

(5.4) PROPOSITION. Let E be an FK-space containing r/J and let 1~ r < 00.

Then the space E["8J, is an FK-space having the property [rIBJr.

(5.5) Remark. Multiplier statements corresponding to (5.2) (respec
tively (5.3)) do not hold for spaces satisfying condition (2.F) (respectively
condition (2.E)) with respect to the multipliers dVr (respectively dvrnco) or
with respect to the sequences satisfying conditions (4.C) (respectively
condition (4.E)). The spaces dV r and H r serve as counterexamples.
However, we can obtain a partial result which we give without proof.

(5.6) PROPOSITION. Let E be an FK-space containing r/J, let 1~ r < 00,

and let x be a sequence. If x .Y E E for every sequence y in dVr satisfying
condition (2.E), then the sequences x .y satisfy (2.F).

6. FUNCTION SPACES

We now consider spaces of 2n-periodic functions or distributions g for
which Fourier coefficients g(k) are defined [8]. Sequences will be defined
on the integers, and the sequences in q, dv" and bv will be assumed to be
symmetric (that is, Yk= y-k)' Here ek is the function ek(x)=eikx and

n ()" "(k) ikxs g X = ~Ikl";n g e.

640/68/1 -6
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Zygmund [15, Theorem XIII.7.3] shows that for every function g in Cz"
and 1~ r < 00 we have

1 11

-1 L Iskg(x) - g(x)1 r --4 0
n+ k=O

uniformly for all x. (6.A)

Since the norm on Cz" is II gil 00 = sup x Ig(x)l, this is equivalent to saying
that Cz" has the property [lTKJr, where AH1={FxEC;"IFx(g):=g(x),
o~ x ~ 2n} as defined by (2 .A). This shows by (5.2) and (5.3) that for all
1~ r < 00, we have

(6.B)

~ ~ ~1 ~1 ~ ~ ~ ~ ~

Since (Cz" --4 Cz,,) = (L z" --4 L z,,) = (Mz" --4 M z,,) = (L~ --4 L~)= M z" [8,
Vol. 2, p. 246], an immediate consequence is the result dV r C Mz" for all
1~ r < 00 [6]. We also obtain Fomin's integrability result dV r n Co =

~ ~ 1 •
(dVr)ADc(Mz")AD=L z" [6,9]. Smce e=(..., 1, 1, 1, ... )Edv" we have also

~1 ~1 ~ ~ ~oo ~oo

dvr ·L2"=L z,,, dvr·Mz"=Mz,,, and dvr·Lz"=L z,,.
Conversely, our multiplier results show that (6.A) can be obtained from

Fomin's integrability result.
Furthermore, (MZ")AD = i~" and (i~)AD= Cz". By (5.2), (3.2), and

(5.3) we have the following.

(6.1) THEOREM. Let 1~ r < 00. The spaces Cz" and L~" have the
property [lTKJr. The spaces L~ and M z" have the property [lTBJr.

(6.2) Remark. Theorem 6.1 for L~" is stronger than the theorem of
Fejer's which states for f E L1",

(n --4 00 ).

This is equivalent to

sup-I-II f F'(Skf-f)I=O(I)
FEAn+ k~O

for some subset A of the dual of L~". Since the dual of L~" is L~ and the
continuous linear functionals on L1" are of the form Fg(f) =H" g. f for
gEL~, we have

(n --4 00 ).
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Theorem 6.1 shows that the absolute value can be taken inside the
summation and raised to any power 1~ r < 00 to obtain

(n ---> (0). (6.C)

One could consider direct proofs of (6.C) from (6.A) but the main idea
here is the equivalence of convergence theorems and multiplier theorems.

(6.3) Remark. The following example due N. Tanovic-Miller shows
that (6.C) cannot be further strengthened by taking the supremum inside
the summation. That is, the property [a-Kl cannot be strengthened to the
property (2.E). The example shows that for each 1~ r < 00, there exist
fE L~" such that

1 n I 2" Ir-1 L sup f g. (s'1- f)
n+ k~ollgIlOO";1 0

(n ---> (0).

It is sufficient to let r = 1, since by Holder's inequality

Consider the cosine series (1/2) ao + I:%"= 1 ak cos kx, where ao = a1 = 0,
and ak = IIJlog k, (k ~ 2). We have ak ! 0, kL1ak ---> 0, and
Lk (k + 1) 1L12akl < 00 since L1ak'" 11k log3/2 k, and L12ak '" llk210g3

/
2k. By

a classical result of Kolmogorov [7, Vol. 1, 7.3.1 and 7.3.2] the cosine
series converges to

1 OCJ

f(x)=2 L (k+l) L12akFk(x)
k~O

(6.D)

(Fk denotes the Fejer kernel) pointwise for x#o (mod 2n), fEL~", and
(6.D) is the Fourier series off (moreover,f~0). By partial summation and
by (6.D), we have

snf(x) - f(x) =! nL1an_l Fn_1(x) + !anDn(x)
OCJ

-! L (k + 1) L12akFn(X)
k=n-l
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(D n denotes the Dirichlet kernel) for x#o (mod 2n). Thus

ex>

-~ L (k+l)IL/ 2aklllFnIILI.
k ~n --I

Since IlFnll Ll = 1, given e> 0, there exists N such that for n > N,

Hence (lj(n + 1)) LZ=o lis,,! - fll Ll ?: (lj(n + 1)) LZ~ N lakl IIDkl1 LI - ej2.
But IIDkII Ll-(4jn2)logk, and consequently (lj(n+l))LZ~ollskf-fIILI

~ 00, (n ~ (0).

Since L'f'n = (L'f'n)"B and M 2" = (M2"),,B, we have

and (6.E)

From (3.6) and the first identity in (6.E) we obtain the following.

(6.4) THEOREM. Let g E L~" and 1 ::( r < 00. Then g E L'f'n if and only if

{
In } 1/,

Ilgll':=sup - L Iskg(xW <00.
n.x n + 1 k~O

Furthermore 11·11': is a defining norm on L'f'n.

We can obtain a similar result for the space M 2" from the second identity
in (6.E).

Since the continuous linear functionals on L~" are of the form
Ff(g) = n" f· g for fE L'f'n, we have Ilgll~ = sUPllflloc~ I sUPn{(lj(n + 1))
LZ~o Ig" SkU, g)I'} 1/, for gE L~". Consequently we obtain the following.

(6.5) THEOREM. For each gEL~" and 1 ::(r< 00 we have

1 n I 2" I'sup sup -- L f SkU, g) < 00.
Ilflloo~1 n n+ 1 k~O 0

Finally, since (L'f'n)'P=(C2")'''=M2,, and (M2,,)'P=(L~,,)'P=L'f'n we
obtain the following from (3.4).

(6.6) THEOREM.

(L'f'n ~ B,).
For each 1::( r < 00,
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